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Summary

Stormwater attenuation tanks constructed using modular plastic geocellular units are
commonly used as part of sustainable drainage and rainwater harvesting systems. This
guide discusses the different types of unit that are available and the differences in their
structural performance. It provides information on many full scale trials that have been
carried out on various different systems and gives a detailed assessment of the factors
that affect their structural performance. It also includes guidance on appropriate
testing and structural design together with a discussion of the practical issues that
should  be considered in construction.

There is a wealth of information now available about the performance of plastic
geocellular tanks. Those that are designed and constructed in accordance with normal
structural and geotechnical principles should provide a safe and durable solution for
storage of stormwater below ground.
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Glossary

Attenuation system A system designed to control the peak flow from a given
site by providing a facility for the temporary storage of
stormwater.

Characteristic load The expected loads to be supported by a structure.

Characteristic strength The load at which a unit under test begins to yield (ie rate
of deflection begins to increase). The lowest value from a
series of tests is usually taken as the characteristic strength.

Crate Commonly used term for plastic modular geocellular
storage units. Also known as plastic crates.

Creep Increase in deflection (and possible loss of strength) over
time under a constant load applied to a geocellular
structure.

Design load The characteristic load multiplied by the partial factor of
safety relevant to the limit state being considered.

Design strength The maximum load at which the product will provide
continuous long-term structural performance. This value
is derived from the characteristic strength divided by a
partial factor of safety.

Geogrid A regular grid structure of polymeric material formed by
joined intersecting ribs. They are used to reinforce
(increase the strength) soil, rock, earth, or other similar
material.

Geomembrane An impermeable material often wrapped around
structures to create a watertight tank. An extra geotextile
layer may be wrapped around the membrane to reduce
punching stresses caused by loading on sharp points of
contact.

Geotextile A permeable material often wrapped around the structure
to prevent soil entering, or silt passing out of, the storage
units. Also used to protect geomembranes.

Honeycomb type Plastic modular unit manufactured with a honeycomb
structure for storing excess stormwater. Honeycomb type
units are extruded.

Infiltration system A system designed to provide an underground storage
facility in which stormwater is stored temporarily before it
soaks into the surrounding soil. Commonly known as
soakaways.

Lateral load The horizontal load applied to the vertical face of the
product due to the surrounding ground, groundwater
and super imposed loads.

Limit state A set of performance criteria (eg deflection, strength,
stability) that must be met when a geocellular structure is
subject to loads.
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Modular plastic geocellular Any cuboid plastic structure that has been designed to
storage units create an underground void for storing stormwater or to

act as an infiltration system. The large void is formed by
placing and stacking many units together. Often referred
to as crates.

Partial factors of safety Factors applied to both the strength of the modular unit
and the loads imposed on it. They provide a degree of
security to the tank and allow for creep and fatigue. There
are many uncertainties associated with detailed structural
design including simplifications in representing the
geocellular structure for analysis, accidental overloading of
the structure, variations in material properties and
variations in dimensions from those assumed or specified.
The factor of safety allows for these uncertainties.

Permanent load Loads that remain on a structure for its entire life. An
example is the weight of backfill over a tank.

Plastic crate See Crate.

Porosity Ratio of useable storage volume to total volume (void ratio
is often confused with porosity).

Rainwater harvesting A system designed to provide a temporary underground
system storage facility from which stormwater is pumped for

reuse.

Serviceability limit state To satisfy the serviceability limit state criteria, a geocellular
structure must  remain functional for its intended use
subject to routine loading.

Soakaway See Infiltration system.

Sub-base replacement Geocellular units that are specifically designed to be placed
at a shallow depth in the pavement construction and
replace aggregate sub-base. The units achieve this by
acting as a flexible raft with sufficient strength to distribute
the applied loads.

Transient load Loads that may be applied and removed over the design
life of a structure, for example traffic load.

Ultimate limit state To satisfy the ultimate limit state, a geocellular structure
should not collapse when subjected to the peak design
load.

Ultimate strength The maximum load that a unit can support without
failure.

Vertical load The axial load applied to the upper surface of the unit
due to the self weight of backfill and transient loads.

Void ratio The ratio of useable storage volume to volume of solid
material.
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1 Introduction

1.1 Background

Modular plastic geocellular units are commonly used as a cost effective method of
providing stormwater infiltration (soakaways) and attenuation tanks for new
developments (Figure 1.1). Geocellular tanks are usually constructed using modular
units that are cuboid plastic structures with a high porosity typically in excess of 90 per
cent (note this is often incorrectly referred to as the void ratio of the units). The
individual units or boxes are placed together to form a large tank surrounded by either
a geomembrane or a geotextile. Since the early 1990s, they have been used to construct
stormwater attenuation tanks and soakaways worldwide.

There is very little understanding within the construction industry of the different
types of modular units that are available and the effect that the form of the units has on
their structural performance. In the past there has been very little independent
guidance on the structural design and performance of such tanks, with many
consultants and contractors relying solely on the advice of manufacturers.

Figure 1.1 Large attenuation tank constructed from individual geocellular units

This book provides guidance on the structural design and construction of geocellular
stormwater drainage tanks. Information about testing components and carrying out
design calculations are provided along with worked examples. It does not cover other
design issues such as hydraulic performance, siltation etc. There is extensive guidance
on such matters provided in C697 The SUDS Manual (CIRIA, 2007) and by British
Water (2005).

Frequently engineers, architects and clients rely on manufacturers’ claims regarding the
load carrying capacity of these types of tank. However, it is important to realise that
these tanks are structures and should be designed by competent engineers using sound
structural and geotechnical principles as they may be used below areas that are
trafficked by heavy goods vehicles that can impose significant loads on them.
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Appropriate analysis is required to ensure they do not collapse under the imposed
load.

Geocellular units are not all the same. There are various types of box units that have
different structural forms. Laboratory testing and design calculations should take
account of these differences, for example a specific method of laboratory testing used
on one type may not be appropriate for another because it may not replicate how the
box performs when installed in the ground. In the worst case inappropriate laboratory
testing can overestimate the strength of the units.

Engineers who are responsible for approving tank designs should undertake their own
independent structural design calculations and should ask manufacturers for the
necessary test data to allow them to do so.

There have been failures of modular geocellular tanks (Figure 1.2) both in the UK and
elsewhere (Wendebourg, 2006 and Paul and Wieland, 2006) but, from the available
evidence, none have been caused by problems with materials or quality of manufacture
of the units or tanks.

The four main contributing factors to most failures are:

1 Inadequate design, often not taking account of particular ground conditions on a
site, or not allowing for creep of the units.

2 Lack of understanding of the performance of the tanks, leading to overloading, for
example by running heavy plant across tanks that were not designed to carry such
loads, or by using unsuitable backfill, for example containing boulders.

3 Lack of appreciation of the influence of groundwater levels or the effect of surface
water flows into excavations during construction.

4 Inappropriate laboratory testing that overestimates the strength of the units.

If these issues are addressed then plastic geocellular tanks constructed using any of the
available units can provide a safe and durable solution for the storage of stormwater
below ground. 

Figure 1.2 Example of the consequences of failure of a modular geocellular tank after three years
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Plastic modular tanks are subject to numerous loads and the testing and design regime
should consider all of them to ensure that an installation will be safe and serviceable
(Figure 1.3).

Figure 1.3 Loads on modular plastic tanks

Design of tanks constructed using modular geocellular units should:

� take account of all the applied loads, including accidental loading (for example by
delivery vehicles in a car park)

� be based on appropriate laboratory tests

� use appropriate partial factors of safety

� analyse all appropriate limit states (or failure modes).

The design requirements for a safe and serviceable tank installation are summarised in
Figure 1.4. 
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Figure 1.4 Design requirements

1.2 Design standards

Geocellular modular units may be considered as geotechnical structures from a design
point of view because they act as retaining structures and support earthworks materials.
The design philosophy proposed in this guide follows the requirements for
geotechnical design practice as described in BS EN 1997-1:2004.

Eurocode 7 defines three Geotechnical Categories that may be used to establish
geotechnical design requirements. These range from Category 1 which covers the most
small and relatively simple structures up to Category 3 which covers complex and large
geotechnical structures or difficult ground conditions. The Geotechnical Categories are
discussed in more detail in Chapter 4 but most geocellular tanks that support vehicles
are likely to fall into Category 2. Small tanks in landscape areas may fall into Category
1 if there is only a negligible risk associated with failure and the consequences will be
minor.

For Category 1 structures the requirements of Eurocode 7 can be met based on
experience and qualitative geotechnical investigations. For Category 2 structures
quantitative geotechnical data and analysis is required to ensure that the fundamental
requirements of the Eurocode are satisfied (ie the design of the geocellular tanks
should include calculations that are based on site investigation data). The designs
should be supervised by a qualified engineer with relevant geotechnical training and
experience (Department for Communities and Local Government, 2007).

Another concept introduced in Eurocode 7 is the geotechnical design report. This
document provides a record of the assumptions, methods of calculation and the results
of the verification of safety and serviceability. It should also include details of the
supervision required during construction and a note of items to be checked or
requiring maintenance or monitoring. The level of supervision will depend on the
geotechnical category, with the requirements increasing with increasing category.
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The design report should be provided to the contractor and client so that they know
what assumptions have been made during the design of the tank, for example
maximum vehicle loads. Further information is provided in Chapter 4 of this
publication and in BS EN 1997-1:2004. Further information on the implications of the
geotechnical categories and geotechnical design report is also provided in Chapter 4.
Provision of the design report will help prevent the kind of failures that have occurred
with geocellular tanks.

1.3 History

In the mid 1980s plastic honeycomb structures were first used for stormwater storage
in mainland Europe, below permeable pavements. This was possibly the first use of
modular plastic tank structures to manage stormwater runoff. Their use became more
widespread in the early 1990s and in the late 1990s honeycomb attenuation structures
were introduced into the UK.

Since then there has been an explosion in the number and different types of box units
available and they are now widely used for attenuation storage and infiltration in
stormwater drainage systems. The units can be used to construct tanks to replace
traditional solutions such as perforated manhole rings in soakaways or oversize pipes
and pre-cast concrete box culverts in attenuation systems.

Despite this widespread use, consulting engineers still tend to rely on manufacturers to
provide structural designs and there seems to be little understanding of the variation in
structural performance of these tanks within the construction industry. This has led to
failures that could have easily been avoided.

This book aims to address these issues and allow consistent and transparent designs to
be undertaken.

1.4 The importance of appropriate structural design

Apart from the obvious health and safety implications of a collapse and the cost of
replacing a tank, there are other implications that should be considered:

� the cost of replacing overlying construction such as car parks and the resulting
costs because of loss of use can be far more than the cost of replacing the tank
(Figure 1.5)

� the reputation of the designers and/or suppliers and relationships with clients will
be damaged

� failures will lead to increased professional indemnity premiums where designers
may be responsible

� the acceptance by the industry of modular plastic geocellular units for such use will
be undermined

� the consequence of tank collapse can be far reaching and appropriate structural
design should be a high priority for both consultants and suppliers, in the same
way that it is for other geotechnical structures. 
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Figure 1.5 Loss of use of car park spaces due to tank collapse
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